Publications of Meyke Hermsen

Papers in international journals

  1. M. Hermsen, F. Ciompi, A. Adefidipe, A. Denic, A. Dendooven, B. Smith, D. van Midden, J. Brasen, J. Kers, M. Stegall, P. Bandi, T. Nguyen, Z. Swiderska-Chadaj, B. Smeets, L. Hilbrands and J. van der Laak, "Convolutional neural networks for the evaluation of chronic and inflammatory lesions in kidney transplant biopsies", American Journal of Pathology, 2022;192(10):1418-1432.
    Abstract DOI PMID
  2. I. Girolami, L. Pantanowitz, S. Marletta, M. Hermsen, J. van der Laak, E. Munari, L. Furian, F. Vistoli, G. Zaza, M. Cardillo, L. Gesualdo, G. Gambaro and A. Eccher, "Artificial intelligence applications for pre-implantation kidney biopsy pathology practice: a systematic review.", Journal of nephrology, 2022.
    Abstract DOI PMID
  3. M. Hermsen, V. Volk, J. Brasen, D. Geijs, W. Gwinner, J. Kers, J. Linmans, N. Schaadt, J. Schmitz, E. Steenbergen, Z. Swiderska-Chadaj, B. Smeets, L. Hilbrands and J. van der Laak, "Quantitative assessment of inflammatory infiltrates in kidney transplant biopsies using multiplex tyramide signal amplification and deep learning", Laboratory Investigation, 2021;101(8):970-982.
    Abstract DOI PMID Download
  4. M. Hermsen, B. Smeets, L. Hilbrands and J. van der Laak, "Artificial intelligence; is there a potential role in nephropathology?", Nephrology Dialysis Transplantation, 2020.
    Abstract DOI PMID
  5. M. Hermsen, T. de Bel, M. den Boer, E. Steenbergen, J. Kers, S. Florquin, J. Roelofs, M. Stegall, M. Alexander, B. Smith, B. Smeets, L. Hilbrands and J. van der Laak, "Deep-learning based histopathologic assessment of kidney tissue", Journal of the American Society of Nephrology, 2019;30(10):1968-1979.
    Abstract DOI PMID Cited by ~25
  6. P. Bándi, O. Geessink, Q. Manson, M. van Dijk, M. Balkenhol, M. Hermsen, B. Bejnordi, B. Lee, K. Paeng, A. Zhong, Q. Li, F. Zanjani, S. Zinger, K. Fukuta, D. Komura, V. Ovtcharov, S. Cheng, S. Zeng, J. Thagaard, A. Dahl, H. Lin, H. Chen, L. Jacobsson, M. Hedlund, M. Cetin, E. Halici, H. Jackson, R. Chen, F. Both, J. Franke, H. Kusters-Vandevelde, W. Vreuls, P. Bult, B. van Ginneken, J. van der Laak and G. Litjens, "From detection of individual metastases to classification of lymph node status at the patient level: the CAMELYON17 challenge", IEEE Transactions on Medical Imaging, 2018;38(2):550-560.
    Abstract DOI PMID Cited by ~54
  7. G. Litjens, P. Bandi, B. Ehteshami Bejnordi, O. Geessink, M. Balkenhol, P. Bult, A. Halilovic, M. Hermsen, R. van de Loo, R. Vogels, Q. Manson, N. Stathonikos, A. Baidoshvili, P. van Diest, C. Wauters, M. van Dijk and J. van der Laak, "1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset", GigaScience, 2018;7(6):1-8.
    Abstract DOI PMID Cited by ~48
  8. B. Bejnordi, G. Zuidhof, M. Balkenhol, M. Hermsen, P. Bult, B. van Ginneken, N. Karssemeijer, G. Litjens and J. van der Laak, "Context-aware stacked convolutional neural networks for classification of breast carcinomas in whole-slide histopathology images", Journal of Medical Imaging, 2017;4(4):044504.
    Abstract DOI PMID Cited by ~75 Download
  9. B. Ehteshami Bejnordi, M. Veta, P. van Diest, B. van Ginneken, N. Karssemeijer, G. Litjens, J. van der Laak, T. Consortium, M. Hermsen, Q. Manson, M. Balkenhol, O. Geessink, N. Stathonikos, M. van Dijk, P. Bult, F. Beca, A. Beck, D. Wang, A. Khosla, R. Gargeya, H. Irshad, A. Zhong, Q. Dou, Q. Li, H. Chen, H. Lin, P. Heng, C. Haß, E. Bruni, Q. Wong, U. Halici, M. Öner, R. Cetin-Atalay, M. Berseth, V. Khvatkov, A. Vylegzhanin, O. Kraus, M. Shaban, N. Rajpoot, R. Awan, K. Sirinukunwattana, T. Qaiser, Y. Tsang, D. Tellez, J. Annuscheit, P. Hufnagl, M. Valkonen, K. Kartasalo, L. Latonen, P. Ruusuvuori, K. Liimatainen, S. Albarqouni, B. Mungal, A. George, S. Demirci, N. Navab, S. Watanabe, S. Seno, Y. Takenaka, H. Matsuda, H. Ahmady Phoulady, V. Kovalev, A. Kalinovsky, V. Liauchuk, G. Bueno, M. Fernandez-Carrobles, I. Serrano, O. Deniz, D. Racoceanu and R. Venâncio, "Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer", Journal of the American Medical Association, 2017;318(22):2199-2210.
    Abstract DOI PMID Cited by ~791
  10. T. Mertzanidou, J. Hipwell, S. Reis, D. Hawkes, B. Bejnordi, M. Dalmis, S. Vreemann, B. Platel, J. van der Laak, N. Karssemeijer, M. Hermsen, P. Bult and R. Mann, "3D volume reconstruction from serial breast specimen radiographs for mapping between histology and 3D whole specimen imaging", Medical Physics, 2017;44(3):935-948.
    Abstract DOI PMID Cited by ~11 Download
  11. G. Litjens, C. Sánchez, N. Timofeeva, M. Hermsen, I. Nagtegaal, I. Kovacs, C. Hulsbergen-van de Kaa, P. Bult, B. van Ginneken and J. van der Laak, "Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis", Nature Scientific Reports, 2016;6:26286.
    Abstract DOI PMID Cited by ~490

Papers in conference proceedings

  1. T. de Bel, M. Hermsen, J. Kers, J. van der Laak and G. Litjens, "Stain-Transforming Cycle-Consistent Generative Adversarial Networks for Improved Segmentation of Renal Histopathology", Medical Imaging with Deep Learning, 2019.
    Abstract Url Cited by ~9
  2. T. Mertzanidou, J. Hipwell, S. Reis, B. Bejnordi, M. Hermsen, M. Dalmis, S. Vreemann, B. Platel, J. van der Laak, N. Karssemeijer, R. Mann, P. Bult and D. Hawkes, "Whole Mastectomy Volume Reconstruction from 2D Radiographs and Its Mapping to Histology", Breast Imaging, 2016;9699:367-374.
    Abstract DOI Cited by ~3
  3. B. Bejnordi, G. Litjens, M. Hermsen, N. Karssemeijer and J. van der Laak, "A multi-scale superpixel classification approach to the detection of regions of interest in whole slide histopathology images", Medical Imaging, 2015;9420:94200H.
    Abstract DOI Download

Abstracts

  1. M. Hermsen, T. de Bel, M. den Boer, E. Steenbergen, J. Kers, S. Florquin, J. Roelofs, M. Stegall, M. Alexander, B. Smith, B. Smeets, L. Hilbrands and J. van der Laak, "Deep learning-based histopathological assessment of renal tissue", American Society of Nephrology Kidney Week 2019, 2019.
    Abstract
  2. M. Hermsen, T. de Bel, M. den Boer, E. Steenbergen, J. Kers, S. Florquin, B. Smeets, L. Hilbrands and J. van der Laak, "Glomerular detection, segmentation and counting in PAS-stained histopathological slides using deep learning", Dutch Federation of Nephrology (NfN) Fall Symposium, 2018.
    Abstract
  3. M. Hermsen, T. de Bel, M. van de Warenburg, J. Knuiman, E. Steenbergen, G. Litjens, B. Smeets, L. Hilbrands and J. van der Laak, "Automatic segmentation of histopathological slides from renal allograft biopsies using artificial intelligence", Dutch Federation of Nephrology (NfN) Fall Symposium, 2017.
    Abstract
  4. M. Hermsen and J. van der Laak, "Highly multiplexed immunofluorescence using spectral imaging", DPA's Pathology Visions Conference 2016, San Diego, CA, US, 2016.
    Abstract